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Abstract — As computing and communication devices are equipped 
with increasingly versatile wireless connection capabilities, the 
demand for security increases. Cryptography provides a method for 
securing and authenticating the transmission of information over the 
insecure channels. Elliptic Curve [EC] Cryptography is a public key 
cryptography which replaces RSA because of its increased security 
with lesser number of key bits .EC point multiplication module will be 
available in majority of secure communication systems. The most 
crucial operation in Elliptic Curve Cryptosystem is the computation of 
point multiplication, i.e., computation of kP for given integer k and 
point P on elliptic curve. This work aims to design and implement 
elliptic curve based crypto system on a single field programmable gate 
array (FPGA).The hardware complexity is reduced using normal 
basis representation of GF and projective co-ordinate representation 
of elliptic curves.   

Keywords—Elliptic Curve Cryptosystems, Gaussian Normal Basis, 
Finite Fields,  FPGA. 

I. INTRODUCTION

Elliptic Curve Cryptography is a public key cryptography which 
is now replacing the commonly used RSA.  It uses lesser 
number of key bits as compared to RSA. Shorter key implies 
less memory need and lower power consumption. Elliptic curve 
cryptography (ECC) is proposed by Miller and Koblitz. EC 
point multiplication module will be available in majority of 
secure communication systems. Since, EC point multiplication is 
replacing RSA as a standard for digital signature and key 
exchange, the hardware module for the implementation of 
elliptic curve (EC) point multiplication will be available in the 
hardware structure of majority of the secure communication 
systems.  

Because of all these factors the architecture for key exchange 
and message encryption using a single module of EC point 
multiplication on a time sharing basis becomes highly suitable 
for battery powered handheld devices This work aims to design 
and implementation of elliptic curve based cryptosystem on a 
single field programmable gate array (FPGA). It  proposed the 

use of  a single module of elliptic curve point multiplication 
in a time sharing basis. The hardware complexity is reduced 
using normal basis representation of GF(2) and projective 
co-ordinate representation of elliptic curves. The flexibility 
and high speed capability of FPGAs make them a suitable 
platform for cryptographic applications. In this paper, we 
propose a high performance elliptic curve cryptosystem over 
GF( 2 ). The proposed architecture is based on standard 
elliptic curve point multiplication algorithm and uses GNB 
for GF(2 ) field arithmetic. It  uses fast arithmetic units 
based on a word-level multiplier. It  adopts a parallelized 
point doubling and point addition unit with uniform 
addressing mode. It  utilizes benefits of GNB representation. 
The  proposed architecture leads to a considerable reduction 
of computational delay time compared with previously 
proposed hardware implementations.  

The remainder of the paper is organized as follows: In 
Section 2, the mathematical background of elliptic curves is 
and point multiplication in elliptic curve is discussed. In 
Section 3, key generation based on EC is presented and the 
hardware structure for EC point multiplication is discussed. 
Section 4 is about the algorithm for EC arithmetic. Finally 
Section 5 describes the FPGA implementation and the 
experimental result, Concluded in Section 6. 

II. MATHEMATICAL BACKGROUND

 Elliptic curves have been intensively studied in algebraic 
geometry and number theory. They are used in constructing 
efficient and secure cryptosystems. Elliptic Curves are so 
named because they are described by cubic equations, 
similar to those used for calculating the circumference of an 
ellipse. An elliptic curve E over a field F is given by the 
Weierstrass equation 

 E: ݕଶ + ܽଵݕݔ + ܽଷݕ = ଷݔ + ܽଶݔଶ + ܽସݔ + ܽ (1)
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The variables x, y and the constants a1, a2, a3, a4 & a6 range 
over any given algebra that meet field axioms.[1],[2],[3] An 
elliptic curve over a field F is the set of points (x, y) with x, y F 
that satisfy equation (1). In the definition of an elliptic curve is a 
single element denoted by O and called the ‘point at infinity’. 

Elliptic curves defined over GF (2) has great significance since 
they allow binary operations and are very suitable for hardware 
implementation. A Galois Field (finite field) GF(2)consists of 
 2. elements for some integer ‘m’ together with addition and 
multiplication operations that can be defined over polynomials 
in GF(2). Elliptic curves over GF(2) are defined by a cubic 
equation in which the variables and coefficients take on values 
in GF(2). So, all mathematical operations on EC are performed 
using the rules of arithmetic in GF( 2 ) [8],[3].  Since the 
characteristic of the finite field GF(2) is 2, the equation (1) can 
be transformed by suitable change of variables to get the 
following forms 

ଶݕ   + ݕݔ = ଷݔ + ܽଶ ݔଶ + ܽ  (2) 

ଶݕ   + ܽଷݕ = ଷݔ + ܽସݔ + ܽ   (3) 

The set E (ܽଶ , ܽ) consisting of all pairs  (x, y) that satisfy 
equation (2) together with the point at infinity O form an abelian 
group if ܽ≠ 0. This type of curves is obtained if a1 in equation 
(1) is non zero. These curves are non-super singular elliptic
curves. The set E (ܽଷ, ܽସ , ܽ) consisting of all pairs of (x, y) 
that satisfy equation (3) together with the point at infinity O 
form an abelian group if ܽଷ≠ 0. These curves are super singular 
elliptic curves. This type of curve is obtained if ܽଵin equation (1) 
is zero. Here we will be considering the non-super singular 
elliptic curves only as they provide the highest security in 
GF(2).  

Rules for addition over non-super singular curves over GF(2) 
can be stated as follows:[2] 

For all points P, Q E (ܽଶ,ܽ), 

1. P + O = P
2. If P = (ݔଵ, ݕଵ), then –P = (ݔଵ,ݔଵ+ݕଵ)
3. Addition formula: If P = (ݔଵ, ݕଵ) and Q=(ݔଶ, ݕଶ),

then P+Q = R = (ݔଷ, ݕଷ) is given by the ‘tangent and chord’
method

ଷݔ = ଶߣ + ߣ +  ଶ + ܽଶݔ + ଵݔ
 ଵ  (4)ݕ+ଷݔ+(ଷݔ+ ଵݔ)ଷ= λݕ  

 where = (ݕଵ + ݕଶ)/(ݔଵ + ݔଶ) 

4. Doubling formula: If P = (x, y), then 2P =R = (ݔଷ, ݕଷ)is
given by 

ଶߣ=ଷݔ +λ +ܽଶ 
 ଷ  (5)ݔ+ଷݔଵଶ +λݔ=ଷݕ  

Where λ = ݔଵ + ݕଵ/ݔଵ 

Thus, adding two elliptic curve points as well as doubling 
an elliptic curve point requires one inversion and two 
multiplications each over the underlying finite field 
GF (2) . Computing inverses is relatively expensive in 
comparison to multiplication in GF(2). In order to avoid 
computing inverses the point P(x,y) in affine coordinates 
can be converted to projective coordinate as (x,y,1). A point 
P(X, Y, Z) in projective coordinates can be converted to 
affine coordinates as (X/Z, Y/Z) provided Z ≠ 0. Z = 0 
implies a point at infinity. For projective coordinates 
representation of the affine points, the common denominator 
for X and Y coordinates are taken as Z .The projective 
equation of the EC is given by  

ܻଶܼ + ܻܼܺ = ܺଷ + ܽଶܺଶܼ + ܼܽଷ  (6) 

2.1 Elliptic curve addition 

Let P =  (ݔଵ,ݕଵ, ݖଵ),Q = (ݔଶ,ݕଶ, ݖଶ) such that P ≠ ±Q then P 
+ Q = R = (ݔଷ, ݕଷ, ݖଷ) is given by
A = ݕଵݖଶ + ݖଵݕଶ,,
B = ݔଵݖଶ + ݖଵݔଶ,
C = ܤଶ,
D = ݖଵݖଶ,
E = (ܣଶ + AB + ܽଶC)D+ BC

Thus for EC addition, 
 ,ଷ= BEݔ

 ଶ + (A + B)Eݖ(ଵBݕ + ଵݔA)ଷ = Cݕ
= ଷݖ   ଷD.  (7)ܤ 

2.2 Elliptic curve doubling 

If P = (ݔଵ,ݕଵ, ݖଵ) then 2P = R = (ݔଷ, ݕଷ, ݖଷ) is given by 
A = ݔଵଶ 
B= A + ݕଵݖଵ,  
C=  ݔଵݖଵ,  
D = ܿଶ,  
E=(ܤଶ+BC + ܽଶD) 
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Thus for EC doubling, 
= CE, 

 = (B + C)E+ C, 
 = CD.        (8) 

In  projective coordinates, no inversion is needed. 

2.3  Point Multiplication on Elliptic Curves 

If P is a point on the elliptic curve and ‘k’ is any integer, 
computing a new point ‘kP’ returns another point on EC. This 
operation is called point multiplication operation on EC. The EC 
point multiplication is computed by repeated point additions 
which is same as adding the point P to itself 'k' times and point 
doubling which is same as multiplying with 2. The point 
multiplication operation can be implemented with a number of 
point addition and doubling operations. For example, 5P can be 
written as 2(2P) + P, which can be implemented as a 
combination of two doubling and one addition operation. Thus 
for a given point P on the EC and any integer 'k', computation of 
kP is easy and also at the same time, computing k from R and P 
is extremely difficult. This is called the elliptic curve discrete 
logarithm problem .The EC operations in turn are composed of 
basic operations in the underlying finite field (FF or GF)[4],[7]. 
    Elliptic curve point multiplication is a one-way function 
because the computation in one direction is easy while that in 
the opposite direction is difficult,. This is the underlying 
mathematical problem that provides security and strength to EC-
based cryptosystems. Non-supersingular curves are considered 
to be more secure compared to supersingular elliptic curves.  

2.4  Finite Field Arithmetic 
1. Galois Field Addition 

 If A = ( , ,…. , ) and B = ( , ,…. , ) 
are elements of GF( ), then the sum C =A+B = ( , ,…. 

, ) ,   where ci = ai bi. Therefore sum can be obtained 
as bitwise XORing of A and B.  

Fig.1: GF Addition Unit 

2. Galois Field Squaring

Squaring of an element A in the normal basis representation 
is a cyclic shift operation. Hence, the hardware 
implementation of squaring operation requires only a shift 
register 

Fig. 2:  GF Squaring Unit 

3. Galois Field Multiplication

It is very costly in terms of hardware requirement. The 
number of clock cycles required for its computation depends 
on the particular architecture of the FF multiplier. So, an 
attempt is being made to reduce hardware complexity 
required for multiplication. 

III. KEY GENERATION

Private key cryptosystem and public key cryptosystem are 
the two kinds of cryptosystems that implement 
cryptographic algorithms. In a private key cryptosystem 
both communicating entities share a secret key through a 
secure and authenticated channel. This secret key is used for 
both encryption and decryption of data. Private Key 
cryptography is used for the encryption of data due to its 
speed and reduced complexity of operations. However, it 
has certain shortcomings.[5],[7] 

Key Management Problem :In a broadcast communication 
scenario, each user will have to communicate with many 
different ones. Thus, communication on a public network is 
not restricted to one-on-one. For a network of n users, n(n-
1)/2 private keys need to be generated. When n is large, the 
number of keys becomes unmanageable. 

Key Distribution Problem: With such a large number of 
keys that need to be generated on a network, the job of 
generating the keys and finding a secure channel to 
distribute them becomes a burden. 

No digital signatures possible: A digital signature is an 
electronic analogue of a handwritten signature. If Alice 
sends an encrypted message to Bob, Bob should be able to 
verify that the received message is indeed from Alice. This 
can be done with Alice’s signature. Private key 
cryptography does not allow such a feature. But, public key 
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cryptography uses two keys. Each user on a network publishes a 
public encryption key that anyone can use to send them 
messages, while keeping the private key secret for decryption. 
On a network of n users, it only needs n public and n private 
keys. Furthermore, it allows the use of digital signatures. 
However, public key cryptography does have its drawbacks.[9] 

Public and private key cryptography work best together. Public 
key cryptography is ideal for key distribution and management, 
while private key cryptography is ideal for ensuring 
confidentiality, such as encrypting data and communication 
channels. Thus in this hardware implementation public key 
cryptography is used for key exchange and private key 
cryptography is used for message encryption.[2] 

3.1 Hardware Structure for Ec Point Multiplication 

This work concentrates on hardware implementation of 
encryption system, integrity verification system and key 
exchange system. In the design, the point multiplication 
operation is realized through point addition and point doubling 
operations on EC. As it is clear from the formulae for point 
addition equation (7) and point doubling equation (8), these 
operations are performed through addition, multiplication and 
squaring operations. Here the used  variables are elements of the 
basic field over which the EC is defined. The hierarchy of 
arithmetic for EC point multiplication for a point P on an elliptic 
curve is as shown in Fig 3.  

Since EC over GF( ) are more suitable for hardware 
implementation, the basic operations are to be done in GF( ). 

Fig. 3 : EC arithmetic hierarchy 

The finite field addition (FF-Add) and finite field squaring (FF-
Square) operations are quite simple. These operations can be 
done with very few clock cycles. But finite field multiplication 

(FF-Mult) is very costly in terms of hardware requirement. 
The number of clock cycles required for its computation 
depends on the particular architecture of the FF multiplier. 

3.2 Algorithm for Ec Arithmetic 

The Elliptic Curve point multiplication computed by 
repeated point additions and point doubling. 

Algorithm: 

Input :An integer k>0, Point P on EC. 

Output: Q = k.P 

Step1: Set k=

Step2: Set Q         P,  

Step3: for i  from l-1 down to 0 do  

Q       2Q,  

If =1  

Q       P+Q,  

end if  

end for  

Step4: Return(Q)  

The architecture for the EC point multiplication can be 
obtained by combining the EC addition and EC doubling 
architectures. If  is  ‘1’ then first an EC doubling 
operation and then an EC addition operation is to done. If  
is ‘0’ then only an EC doubling operation is to done.  

IV. FPGA IMPLEMENTATION

The complete structural block diagram of the 
implementation of generation is shown below. The 
hardware requires three different clock frequencies which 
can be generated either using an independent clock 
generation circuit or using the Digital Clock Manager in 
FPGA. The hardware consists request and grant signals. 
Once the initial handshaking is done the process of key 
exchange is initiated. The hardware randomly selects an 
integer and stored in the memory. Initial seed point is the 
point P. EC point multiplication block computes the result 
according to the algorithm. The control signals to the 
various blocks are generated by the controller. A controller 
generates  various control signals to synchronize operations 
within the EC point multiplication unit. These operations 
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include loading a new integer input into the point multiplication 
block and passing control between doubling and addition units. 
Finally loading the result into output lines. The counter 
synchronizes the starting and ending of a point multiplication. 
After the completion of point multiplication in the projective 
coordinates, the z coordinate of the result is passed into an 
inversion block.. Then the inverse of z is multiplied with x and y 
coordinates of the result and we  get the point multiplied result 
in the affine form. The integer for point multiplication, k, is 
entered serially into the multiplication block in the order of 
MSB to LSB. The serial input   is the i th bit of the number k. 
For the first non-zero  , the point P is stored as  such in 
projective co-ordinate representation.  

Depending on the value of the following  ’s, the controller 
enables the EC-addition  module for EC addition operation and 
EC-doubling  module for EC doubling operation. The ADD 
sequential machine does the sequential actions. It generates the 
necessary control signals for the EC addition operation. 
Similarly the DOUBLE sequential machine generates the 
necessary control signals for the EC doubling operation. The 
intermediate results are stored in the register/RAM array. Clock 
division is provided for the GF multiplication. The EC addition 
operation and EC doubling operation requires additional one or 
more clock cycles.  

4.1 Experimental Result 

Fig 4 : Simulation Result of elliptic curve addition 

TABLE.1 Synthesis Result of Hardware for Key Generation 

Maximum output required time after clock: 5.248ns. 
Timing summary  
Minimum period: 16.107ns 
Maximum frequency: 62.084MHz. 
Minimum input arrival time before clock: 6.034ns. 

Fig 5 : Structural Block Diagram Of The Hardware Implemented
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V. CONCLUSION

We have designed and implemented the EC based Cryptosystem 
on FPGA Virtex6 (XC6VCX75T). From the results, it can be 
seen that the increase in hardware for implementing message 
encryption is 1%. Hence the proposed design is an efficient 
implementation of EC based encryption system with good 
security. Since EC based key exchange is a popular option for 
key exchange in many of the modern communication systems, 
the proposed design is highly relevant in the implementation of 
secure communication system. 
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